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I. INTRODUCTION

The statistical treatment of systems driven far from equi-
librium presents exciting theoretical challenges �1,2�. Lack-
ing a unified understanding afforded equilibrium phenomena
by the work of Boltzmann and Gibbs, we are exploring un-
known territory without recourse to an established theory.
Our physical intuition, developed in the context of equilib-
rium systems, can be misleading when faced with nonequi-
librium problems. We therefore turn our attention to compu-
tational “experiments” in which a manifestly nonequilibrium
state can be established and studied, seeking to identify key
features shared by many nonequilibrium systems. While real
physical systems are unquestionably important, complica-
tions and subtle details may obscure such common features.
While motivated by realistic problems, microscopic rules
and boundary conditions are chosen simple enough to facili-
tate a comprehensive computational study of the full param-
eter space. Many of the questions relevant in equilibrium
remain interesting, especially as concern the nature of phase
transitions and the principle of universality. The richness of
nonequilibrium phenomena is often surprising, as the relax-
ation of the detailed balance constraint allows a variety of
unexpected possibilities: in contrast to equilibrium, the dy-
namics now affects the stationary �long-time� properties of
the system. Particularly dramatic effects have been observed
in models where the violation of detailed balance is com-
bined with spatial anisotropies and dynamic conservation
laws �1�. There, effective long-range interactions can be in-
duced even if the microscopic rules are perfectly local in
space and time �3�.

In this paper, we consider a model from this class:
namely, a lattice gas of two species of particles and holes on
a fully periodic lattice in two spatial dimensions. To drive the
system out of equilibrium, we bias the hopping rates of the
two species in opposite directions, reminiscent of an “elec-
tric” field E acting on opposite “charges” �though we stress
that there is no Coulomb interaction�. A nonzero charge cur-
rent signals the nonequilibrium steady state. The two species

interact through an excluded-volume constraint and nearest-
neighbor attractions. We choose the interactions carefully, in
order to unify three important models which appear as lim-
iting cases of our more general theory. First, by letting all
particles attract each other, irrespective of their identity
�charge�, the nondriven limit corresponds to the familiar
Ising lattice gas �4�. This well-known equilibrium model will
serve as an anchor for our studies of driven systems. Turning
the bias on but removing all members of one species, we
recover the driven Ising lattice gas introduced by Katz, Leb-
owitz, and Spohn �5� �the KLS model�. The third limit, ob-
tained by letting the interaction strength vanish, corresponds
to a noninteracting two-species model first proposed by
Schmittmann, Hwang, and Zia �6� �the SHZ model�. While
the KLS model phase separates, via a continuous transition,
into high- and low-density strips aligned with the field �5�,
the SHZ model orders into transverse, charge- and mass-
segregated, strips �6�, similar to jamming instabilities in traf-
fic models �7�. If a charge imbalance is imposed, these strips
drift �8�. Our study will allow us to bridge the gap between
these very different scenarios. To set the scene, we briefly
survey some of the relevant previous work.

As a single-parameter modification of the Ising lattice
gas, the KLS model is a minimal model for the study of
nonequilibrium steady states �NESS’s�. Particle hops along
one direction �parallel to the x axis� occur at the normal
equilibrium rate, as if in contact with a heat bath at tempera-
ture T. Particle hops in the other direction �parallel to the y
axis� are enhanced �suppressed� in the positive �negative�
direction by coupling to an external field E. With periodic
boundaries in the y direction, a nonzero current is main-
tained, and the system settles into a NESS. At half-filling,
there remains a continuous transition, though with Tc�E� in-
creasing monotonically with E and saturating at 1.414Tc�E
=0� �9–11�. The transition falls into a novel universality class
with exponents distinct from the Ising ones �12�. The critical
behavior is strongly anisotropic, with distinct sets of expo-
nents characterizing fluctuations perpendicular and parallel
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to E. There has been some discussion regarding the nature of
these fluctuations, with some authors disputing the original
claim that the correct mesoscopic description is Gaussian in
the perpendicular direction �13�. Though the anisotropy
makes numerical investigations of the critical behavior quite
subtle and computationally intensive, recent high-precision
Monte Carlo studies compare the two mesoscopic descrip-
tions. The results are in complete agreement with the predic-
tions of the original field theory �9�. As a final note, we
mention that the combination of anisotropic dynamics and a
conservation law introduces power law correlations at all T
�Tc �3�, a manifestation of the relaxation of the detailed
balance constraint. These correlations are revealed by the
structure factor, which has a discontinuity singularity at the
origin. In this sense, even the “disordered” phase is quite
non-trivial.

Turning to multispecies versions, the simplest �SHZ�
model �6� allows two different types of particles, distin-
guished only by their interaction with the external field. Posi-
tive �negative� particles are biased to hop in the positive
�negative� y direction and interact only via an excluded-
volume constraint. The temperature is absorbed into E, and
the only parameters are E, the overall mass density m, and
the overall charge density �i.e., the density difference of the
two species� f . Here, the mechanism for ordering is the mu-
tual volume exclusion of the particles, so that at sufficiently
strong E and large m, the system locks into a high-density
strip perpendicular to E, with positive and negative particles
blocking each other. For nonzero charge density f , this strip
is found to drift in the direction of the minority species �8�.
Depending on where the phase boundary is crossed, first-
order or continuous transitions are observed �14,15�. Various
other remarkable properties have been discovered. For a
range of aspect ratios, configurations with nonzero winding
number �“barber poles”� are quite frequently observed, in
addition to the usual transverse strips, raising the possibility
of bistability �16�. Power law correlations characterize the
disordered phase, with directionality-dependent exponents
�17�. Another subtle issue concerns the lower critical dimen-
sion: While an exact solution for a strictly one-dimensional
model, characterized by a single “lane” parallel to E, pre-
cludes a transition �18,19�, Monte Carlo data for a “two-
lane” model indicate the presence of a macroscopic cluster in
finite systems �20�. Very subtle finite-size effects control the
decay of this cluster in the thermodynamic limit �21–23�.

In this paper, we consider the two-species model at finite
T and E, where interparticle interactions are expected to play
an important role. By varying T, E, and f , the fraction of the
total population which are of the minority species, we can
interpolate smoothly from the KLS model to the �noninter-
acting� two-species SHZ model. Hence, we expect a compe-
tition between the two types of ordered configurations—
parallel versus transverse strips—favored by these two
limits. As f varies from 0.0 �KLS model� to 0.5 �equal num-
bers of each�, there should be some critical f where the pre-
ferred order switches. To explore these phenomena in more
detail, we map out the phase diagram in E, f , and T for a
range of system sizes. The energy scale is set by our choice
of the interparticle attraction J, and the overall mass density
m is fixed at 0.5 so that the Ising critical point remains ac-

cessible. Many questions arise in connection with earlier
work. How do nearest-neighbor attractions modify the two-
species transition? What will be the effect of a few “impuri-
ties” �i.e., minority particles� on the KLS transition? At what
concentration do the impurities become relevant and change
the nature of the transition? Preliminary results, focusing on
a restricted parameter space, were already reported in �24�;
here, we explore a much wider parameter range, including
several system sizes. We will be able, if not to answer these
questions fully, then to at least suggest the character of their
resolution sufficiently to guide further research.

Our main results are as follows. At fixed E and suffi-
ciently small f , a line of continuous transitions emerges from
the pure KLS �f =0.0� point in the f-T plane. This line sepa-
rates the disordered phase from an ordered one, characterized
by a particle-rich strip parallel to E. As we increase f , we
encounter a bicritical point, where the transition line splits
into a line of continuous order-disorder transitions, from dis-
order into a strip transverse to E, and a line of first-order
transitions along which transverse and parallel order coexist.
If we fix f and lower T, we first observe the transition from
disorder into the transverse strip, followed by a transition
into parallel order. This topology persists at higher E, except
that all lines are shifted to slightly higher temperatures. The
size dependence of the phase diagram is subtle, since the
main features are controlled by different scaling variables.
On the one hand, the transition into the transverse strip is
controlled by the effective drive LyE /T where Ly is the sys-
tem size in the drive direction. On the other hand, the bicriti-
cal point appears to depend on the scaling variable Lyf which
translates into the number of rows �transverse to E� which
can be filled with the minority species. Finally, the pure KLS
point requires finite-size scaling at fixed shape factor
A�Ly /Lx

3 �10� in two spatial dimensions.
The remainder of the paper is organized as follows. We

first describe in detail the microscopic model and the observ-
ables which are used to locate the different phases. We then
present our simulation results, beginning with the structure
of typical configurations in different parts of parameter space
and their associated order parameters. By monitoring the sig-
natures of first- and second-order transitions, we compile a
cut through the phase diagram at fixed E, with variable f and
T. The phase boundaries and their dependence on system
size are analyzed in some detail. To complete the picture, we
present two cuts at different but fixed temperatures, crossing
the phase boundaries by varying E and f . We conclude with
a brief summary and a discussion of some open questions.

II. MICROSCOPIC MODEL AND OBSERVABLES

We consider periodic square lattices of size Lx�Ly, in
two spatial dimensions, with E parallel to the �positive� y
axis. A configuration is specified by the set of occupation
variables, ���r��, where ��r� takes three values, ±1 ,0 denot-
ing a positive �negative� particle or a hole at lattice site r.
Often, we will only need to distinguish particles from holes
via n�r�����r��. All lattices are half filled—i.e., m
��LxLy�−1	rn�r�=1/2—so that the Ising critical point re-
mains accessible. An important parameter is the fraction of
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negative particles �the “minority species”� in the system: f
= �mLxLy�−1	r�−1,��r�. Clearly, we only need to consider the
sector 0� f �0.5, from having no negative particles at all to
equal numbers of each species. For later reference, we also
introduce the charge density q��LxLy�−1	r��r�=m− f . The
nearest-neighbor attraction is modeled by the Ising
Hamiltonian

H = − 4J 	

r,r��

n�r�n�r�� . �1�

We choose attractive interactions J�0, regardless of species.
While many other choices are possible and interesting, ours
provides maximum linkage to known cases: Ising, KLS, and
SHZ. The Monte Carlo dynamics conserves the number of
each species and is specified as follows. An update attempt
begins by picking a bond at random. If the bond connects a
particle-hole pair, the contents are exchanged with the Me-
tropolis rate min(1,exp�−�	H−�yE��r�� /T�) �25�. Hence, at
E=0 we recover the equilibrium Ising model with conserved
magnetization, coupled to a heat bath at temperature T. We
will set J=1 and measure E in units of this �arbitrary� energy
scale. T will be quoted in units of the Onsager temperature,
Tc�E=0�. The change in the y coordinate, due to the pro-
posed move, is denoted by �y, and 	H is the associated
change in internal energy. The term �yE��r� models the gain
or loss of energy from the coupling to E; if �y��r� is positive
�negative�, the move is favored �unfavored�. Our model, in
which E and T are varied independently, raises an interesting
issue. If the ratio E /T is quite large, it becomes almost im-
possible for particles to hop backwards. In a finite system,
this implies that a relatively small fraction of the minority
species—provided the “right” fluctuation occurs—is suffi-
cient to form a stable blockage. Even though such a fluctua-
tion becomes less probable in a larger system, the dynamics
nevertheless becomes nonergodic in the limit E /T→
. In
principle, this can be avoided by introducing, e.g., a small
probability for particles to exchange places �15�. To limit the
number of parameters, we circumvent these problems here
by considering different initial configurations and a range of
system sizes.

The dynamics is diffusive and therefore conserves both
charge and mass density. Though the local effect of the ex-
ternal field is analogous to the effect of an electrostatic po-
tential on electric charges, the boundary conditions exclude
the possibility of a global Hamiltonian description.

As overall density is conserved, we expect ordered con-
figurations to be strips of higher density coexisting with
strips of lower density. We therefore introduce the Fourier
transform of the local mass variable,

s̃�mx,my� �
�

LxLy
	
x,y

n�x,y�e2�i�mxx/Lx+myy/Ly�, �2�

which is labeled by �integer� wave numbers mx=0,
1 , . . . ,Lx, my =0,1 , . . . ,Ly −1. The structure factor

S�mx,my� � 
�s̃�mx,my��2� �3�

then serves as a good order parameter, since it is sensitive to
mass-segregated strip configurations. For example, S�1,0�

will be O�1� for a strip aligned with the field, characteristic
of KLS order; similarly, S�0,1� will detect a strip transverse
to E which develops in the SHZ �two-species� model; and
both are normalized to O�1/LxLy� for a disordered configu-
ration. We also monitor a “susceptibility,”—i.e., the fluctua-
tions of the order parameter:

	�mx,my� � LxLy�
�s̃�mx,my��4� − 
�s̃�mx,my��2�2� . �4�

We note that Ṡ�mx ,my� involves the Fourier transform of the
mass variable and is therefore not sensitive to any charge-
segregated structures. Replacing n�x ,y� by ��x ,y� in Eq. �3�
generates structure factors which respond to charge inhomo-
geneities. We have monitored these and their fluctuations
throughout, and found that their behavior is consistent with
the mass-based quantities.

When S is calculated, the average is taken over multiple
steady-state configurations of a Monte Carlo run, with a typi-
cal run lasting 8�105 Monte Carlo steps �MCS� and 2LxLy
bond update attempts per MCS. Data are collected every 400
MCS; fluctuations of observables indicate that this interval is
sufficient to produce uncorrelated data in the largest �60
�80� systems considered. Typically, the initial 2�105 of the
total 8�105 MCS are discarded to ensure that data are taken
from the steady state. Near critical points and at low tem-
peratures these numbers require modification, due to long
correlation times and long-lived metastable states. In such
cases the only recourse is a careful analysis of individual,
very long runs. When that is necessary we will measure a
quantity closely related to S:

s�mx,my� � �s̃�mx,my��2, �5�

which measures the type of order present in a single configu-
ration. We can then track s for different mx’s and my’s over
the course of a run and see precisely how the averages are
generated.

Now that we have described the various quantities which
will be used to probe the behavior of our model, we turn to
the presentation of the data.

III. RESULTS

A. Phase diagram in f and T

In this section we seek the location and character of tran-
sitions by scanning in f and T at fixed drive E. We choose
E=2.0 since this intermediate value still allows for a signifi-
cant fraction of backward jumps, thus avoiding the spurious
metastable configurations discussed above. At the same time,
it is large enough to induce measurable currents and other
clear signatures of far-from-equilibrium behavior. The two
order parameters S�1,0� and S�0,1� and their fluctuations are
monitored in order to identify the different phases. Large
peaks in their fluctuations, or the presence of hysteresis, are
used as indicators of continuous versus first-order transitions,
respectively. For clarity, we first present a quick overview of
the topology of the phase diagram and then turn to the details
of the data which underlie this picture.

Figure 1 shows the phase diagram in the f-T plane, at E
=2.0, for two different system sizes. Three phases are found:
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a homogeneous, disordered phase �DO�, a transverse strip
�TS� phase as in the two-species model, and a parallel strip
�PS� phase as in the KLS model. The value of f determines
which phase is observed: at f =0 there is only one species of
particles, and a single transition is observed from disorder
into the parallel strip. As f increases, this transition persists
until the number of the minority species is sufficient to create
a blockage and form the transverse strip. From here on, two
transitions are observed: from disorder into the transverse
strip and at a lower temperature from the transverse strip into
the parallel strip. The shift of the DO-TS strip will be ad-
dressed in a later section. Upon increasing f further, only the
DO-TS transition can be detected. Since the PS and TS
phases are not connected by a continuous symmetry transfor-
mation, the TS-PS line cannot have a critical end point.
However, for f �0.10 it occurs at such a low temperature
that it cannot be observed in simulations of a reasonable
length.

After this brief discussion of the phase diagram, we con-
sider the phases and their boundaries in more detail. We be-
gin with some pictures of typical configurations at various
points in the phase diagram. All frames show 40�40 lat-
tices, with E pointing up. White �black� pixels are positively
�negatively� biased particles; blue-green �gray in print� pixels
are holes.

To illustrate the presence of three phases, we select f
=0.075 �Fig. 2�, where only 1.5 rows of the minority species
are present. At high temperatures, the system is disordered;
no figure is shown. The first frame shows a configuration just
below criticality at T=1.77. Though a blockage can form, the
strip is not longer symmetric with respect to � and �. This
leads to a drifting of the strip: Occasionally, the rather thin
blockage of the minority species is opened by backward
hops, and the majority species pours through. These particles
then travel quite rapidly around the periodic lattice and at-
tach to the back of the majority blockage, the net result being
an upward drift of the strip. Lowering T further to 0.84 �third
frame� it appears that interfaces parallel to E are becoming
favorable; this type of configuration is common at these in-
termediate values of f: here, parallel and transverse strips
compete with each other. Indeed the final frame �T=0.78�
shows the preferred low-temperature configuration: a single
strip of mixed charge parallel to E, suggesting a sequence of
two transitions as a function of T.

Next, we map out order parameters and their fluctuations
as a function of T, for a range of f and two system sizes, in
order to locate the phase boundaries. While this cannot re-
place a high-precision finite-size scaling analysis of the tran-
sitions, it is intended to provide a first glance of how the
fluctuations scale with system size.

We begin at f =0.50, with equal numbers of each type of
particle. In Figs. 3 and 4, S�0,1� and its fluctuations are
plotted as a function of T for two system sizes �40�40 and
60�60�; S�1,0� is not shown as the only observed transition
here is from the homogeneous phase into the transverse strip.
In both systems, S�0,1� goes smoothly to zero as T is in-
creased. A clean peak in 	�0,1� is also observed in each

FIG. 1. Phase diagram in f and T for E=2.0. Triangles and
diamonds are boundaries in the 40�40 system; �’s are for the
60�60 system.

FIG. 2. �Color online� Configurations of the 40�40 lattice at
f =0.075, E=2.0 for four temperatures. Upper left, T=1.77; upper
right, T=0.95; lower left, T=0.84; lower right, T=0.78.

FIG. 3. S�0,1� as a function of T for f =0.50, E=2.0. Open
�solid� triangles are for the 40�40 �60�60� system.

FIG. 4. 	�0,1� as a function of T for f =0.50, E=2.0. Open
�solid� triangles are for the 40�40 �60�60� system.
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system, increasing in amplitude with the system size. These
two observations are consistent with a continuous transition
into the transverse strip at f =0.50, and we therefore use the
location of the peak in 	�0,1� to locate the phase boundary
in Fig. 1, with Tc�L=40�=3.35 and Tc�L=60�=4.64.

Upon reducing f we observe a sequence of two transitions
as a function of T. Figure 5 shows both order parameters
S�0,1� and S�1,0� for 1.5 rows of the minority species: f
=0.075 in the 40�40 system. Also shown in Fig. 6 is 	�0,1�
for 1.5 rows of the minority species in both the 40�40 and
60�60 systems. We have omitted the 60�60 data for the
order parameters to keep the plot uncluttered. As before,
S�0,1� and 	�0,1� signal a continuous transition into the TS
phase as T is lowered, though the signal in 	�0,1� is much
more pronounced in the 60�60 system. And also as before,
there are significant fluctuations associated with this phase,
due to strip drifting. Specifically, in the 60�60 system
	�0,1� actually has a broad secondary peak in the ordered
phase. The large magnitude of this signal is quite unexpected
and awaits a satisfactory explanation. For now, we only note
that lowering T increases the effective bias, E /T, and there-
fore enhances fluctuations associated with the drive.

Lowering T further we observe S�0,1� falling abruptly,
while S�1,0� climbs rapidly, suggesting a discontinuous tran-
sition from the transverse strip into the parallel strip. In the
neighborhood of such a transition, one expects to see meta-
stability of the unfavored phase, and this is indeed the case
as shown in Fig. 7. Here we have plotted time traces �as
opposed to configurational averages� of structure factors for
individual configurations, s�1,0� and s�0,1�, defined in Eq.

�5�. When s�1,0��s�0,1��=1 the configuration is a perfect PS
�TS�. Sufficiently close to the transition, the time traces re-
veal the expected behavior, as the system switches between
the two ordered phases. Notice the length of the run shown:
4�107 MCS, which is a factor of 40 longer than typical
runs, indicating that the lifetimes of metastable configura-
tions are already quite long even in the 40�40 system, ren-
dering such behavior nearly unobservable in the 60�60
system.

At smaller values of f we are nearing the junction of the
three phase boundaries, which considerably complicates the
analysis of data from small systems in a couple of ways. The
sequence of transitions �DO-TS followed by TS-PS� be-
comes difficult to resolve, as they are quite close in tempera-
ture, and massive fluctuations from the first-order TS-PS line
may wash out the signal in 	�0,1� which locates the con-
tinuous DO-TS line. And if the junction of the three lines is
indeed a nonequilibrium bicritical point, we can expect
finite-size effects to interfere with the analysis. We can, how-
ever, make some progress based on the assumption that the
relevant control parameter near the bicritical point is the
number of rows of the minority species. This hypothesis will
be treated in more detail below in the sections on scaling
arguments.

At precisely one row of the minority species it is no
longer possible to accurately resolve the two transitions in
the 40�40 system. A weak transverse ordering is observed,
with S�0,1� reaching at most 40% of perfect order. In the
vicinity of the PS-TS first-order transition, huge fluctuations
associated with switching between metastable configurations
are observed, which wash out the signal of the DO-PS tran-
sition. However, it is interesting that these transitions can be
resolved in larger systems at precisely one row of the minor-
ity species: There, these two transitions are sufficiently far
apart in temperature since �as we will see below� Tc in-
creases with Ly across the DO-TS transition. This likely
explains why the DO-TS transition is not observed in the
40�40 system.

Below one row of the minority species we no longer ob-
serve the transverse order, though we caution that this may
be strictly correct only for the finite system. With f just be-
low a single row of the minority species, the high-
temperature phase is homogeneous and the low-temperature
phase is the parallel strip. In the vicinity of the transition,
huge fluctuations are observed in S�0,1� and especially
S�1,0�, where the fluctuations are an order of magnitude
larger than the signal at the DO-TS boundary. In this region

FIG. 5. S�0,1� and S�1,0� as a function of T for f =0.075, E
=2.0 in the 40�40 system. Triangles �squares� are for S�0,1�
��S�1,0��. Lines and dashes are provided to guide the eye.

FIG. 6. 	�0,1� as a function of T for f =0.075, E=2.0. Open
�solid� triangles are for the 40�40 �60�60� system.

FIG. 7. Time trace at T=0.832, E=2.0, f =0.075, in the 40
�40 system. Time in units of 2�105 MCS is plotted on the hori-
zontal axis. The values of s�0,1� and s�1,0� �triangles and squares,
respectively� are plotted on the vertical axis.
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neither S�1,0� nor S�0,1� posesses a well-defined average;
time traces indicate vigorous competition between the two
ordered phases. We conjecture that we are close to the bi-
critical point in the finite system and are therefore unable to
resolve the transition without some knowledge of scaling to
guide the analysis. At smaller f we are farther from the bi-
critical point, and the complications from the presence of the
minority species are less severe. S�1,0� �data not shown�
indicates that the low-temperature configuration is a single
parallel strip, with a smooth approach to zero, again suggest-
ing a continuous transition. Time traces and data for 	�1,0�
are consistent with this conjecture.

We close this section on the f-T phase diagram with a
summary of the results. The picture at higher f is clear: a
clean continuous transition into the horizontal strip, with Tc
decreasing with f . When f is reduced to approximately three
rows of the minority species, the signal of the transition re-
mains clear, though it now sits atop a shoulder of fluctuations
of the ordered phase. At yet smaller f , a second transition
appears between the two ordered phases at lower T; it has the
characteristics of a first-order transition. At even lower f , at
approximately one row of the minority species, both fluctua-
tions perpendicular and parallel to E become so violent that
the DO-TS transition is only seen in larger systems, as the
two transitions nearly overlap in the 40�40 system. Close to
the f =0 point, the transition is once again clean and appar-
ently continuous into a vertical strip of mixed charge. Of
course, all these statements are based on an analysis of finite
systems. In order to draw robust conclusions, a more system-
atic analysis of larger samples is required.

B. Phase diagram in f and E

In the preceding section we studied a slice of the phase
diagram at constant E, varying the fraction of the minority
species and the temperature. Varying T effectively varies
both the strength of particle-particle attractions and the
strength of the bias, since the relevant quantities in the rates
are J /T and E /T. In this section we consider a different cut
through the phase diagram. By varying E and f at fixed T,
the interparticle attractions are held constant while the
strength of the bias is varied. In this way we can study di-
rectly the competition between the drive and attractive inter-
actions. In the following, we choose a value for T and then
scan in E for several values of f . The temperatures are cho-
sen by reference to the KLS temperature: T=2.0 is above the
critical temperature of the KLS model at saturation, and T
=1.2 is at the critical temperature for E=2.0, studied in the
previous section. At this stage, we have only data for 40
�40 systems and are therefore as yet unable to speculate on
results for larger systems. However, they cast a new light on
the more detailed results of the previous sections.

f-E: T=2.0. As before, we first survey the phase diagram
with the help of some typical configurations. The qualitative
picture will then be made more quantitative in the next sec-
tion by examining the behavior of order parameters and their
fluctuations.

Figure 8 shows a series of configurations at various f for
E=20.0. The first frame clearly shows the transverse strip at

f =0.50, and the absence of travelers suggests that the strip is
stationary. In the next frame we have reduced f to 0.10,
reducing the thickness of the minority species to exactly two
rows. Consequently we now see some travelers trickling
through a break in the blockage. Watching an animation in
this region of the phase diagram reveals an interesting be-
havior: the strip is mostly quiescent, except for a few par-
ticles hopping back and forth at the particle-hole interface.
Aside from the different ratio of � to �, these configurations
look similar to the f =0.50 strip. Then, a sudden large fluc-
tuation opens up a hole in the minority blockage: the
� particles pour through, and the strip fluctuates and drifts
partway around the lattice, until the blockage is reestab-
lished. Reducing f further to 0.075 �third frame� we see a
strip in the middle of one of these fluctuation events. In
contrast to f =0.10 where such large fluctuations are rela-
tively rare, the situation is now reversed; i.e., the quiescent
periods become less frequent. In the fourth frame, we set
f =0.05, and while the strip is still clearly visible it now drifts
continuously. The final two frames show f =0.04 and 0.025.
Now there is no longer any clear evidence of phase separa-
tion. This rough picture is consistent with our earlier inves-
tigation of the two-species transition, where we observed
transverse order at and above a single row of the minority
species.

The pictures in Fig. 8 are summarized in Fig. 9, which
presents the phase diagram at T=2.0. The boundary separates
a PS at high E and f from DO at small E and f . As we are
above the critical temperature for the KLS model at satura-
tion bias, the vertical strip does not appear at any E; at low f
�where we might otherwise expect to see such ordered con-
figurations� the system simply remains disordered for any E
and f . Figures 10 and 11 show S�0,1� and 	�0,1� for several
values of f; in the interest of clarity 	�0,1� is plotted for
only four representative f’s. As E is increased the system
orders into a transverse strip, with S�0,1� saturating at
smaller values as f is decreased. At f =0.05 �exactly one row
of the minority species� S saturates at only 0.28, indicating
that the transverse ordering is rather weak, though compari-
son with the data for f =0.025 shows dramatically different

FIG. 8. �Color online� Configurations for several f at E=20.0,
T=2.0, in the 40�40 system. Upper left, f =0.50; upper middle, f
=0.10; upper right, f =0.075; lower left, f =0.05; lower middle, f
=0.04; lower right, f =0.025.
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behavior. Here S�0,1� reaches a maximum of only 0.01, and
the behavior can hardly be called “saturation.” 	�0,1� also
signals a transition, though the clean, sharp spike at f =0.50
becomes a broad bump at f =0.05, and shows no signal at
f =0.025. The susceptibility also indicates a difference in the
ordered phases at different f: at large f increasing E sup-
presses fluctuations, while at smaller f �when the strip begins
drifting� increasing E enhances fluctuations. It is important to
note that the fluctuations at high E are fluctuations about the
ordered phase, as 	�0,1� is always 2–3 orders of magnitude
larger than 	�1,0�. Though not included in the plots, we
have checked the behavior of the ordered phase for E as high
as 40. The fluctuations for small f�f �0.10� saturate and
bounce around a well-defined average, while for larger f they
are suppressed. This is true for f =0.05 and greater; at f
=0.025 the magnitudes of the fluctuations in either direction
are comparable.

f-E: T=1.2. To observe the emergence of the KLS phase,
we lower the temperature to T=1.2�TKLS and explore the
corresponding �f-E� slice of the phase diagram �Fig. 12�. As
long as we remain at f �0.10, we observe a transition similar
to the one at T=2.0: from the homogeneous phase into two-
species order. In contrast, for f �0.04 the KLS transition is
observed, since the minority species is too scarce to form a
blockage and T�TKLS�E=
�. Between these two limiting
values of f we are again in the vicinity of the bicritical point,

and the situation becomes complicated due to the competing
types of order.

Figure 13 shows typical configurations at two different
values of f for various E. For f �0.075 these configurations
look much as they did at T=2.0, so they need not be in-
cluded. The f =0.075, E=20.0 configuration shows some
very interesting structure, almost “equal parts” KLS and two-
species order, suggesting competition between the two
phases. We stress that this is a typical configuration. When f
is reduced to a single row �f =0.05� this competition is re-
duced, and we see instead a KLS phase with some local
two-species order. This trend continues upon reducing f to
zero, where at high E the KLS order is observed. The other
panels show f =0.075 and 0.05 at smaller values of E, E
=4.0 and 2.4, respectively. These E values were chosen be-
cause they maximize the two-species order for these f’s. In
each case the strip drifts rapidly around the lattice. Interest-
ingly, as the majority species is piled onto the back of the
drifting strip it builds long fingers, leading to a very irregular
interface.

In Fig. 14 we plot S for the high-f phases. For f =0.50 and
0.10, S�0,1� shows the system ordering into the two-species
phase much as in the previous section. At f =0.075 the be-
havior changes dramatically. After maximizing the two-
species order at E=3.0, increasing E further suppresses
S�0,1� and enhances S�1,0�, until both saturate below 0.2.
These values are hardly consistent with any kind of distinct

FIG. 9. Phase diagram in f and E /T at T=2.0, in the 40�40
system. Disorder �DO� is observed at small f and E; the transverse
strip �TS� dominates at high f and E. The error bars are smaller than
the size of the data points, unless indicated.

FIG. 10. S�0,1� as a function of E /T for several f in the 40
�40 system: f =0.50, diamonds; f =0.10, squares; f =0.075, tri-
angles; f =0.05, circles; f =0.04, �’s; f =0.025, �’s.

FIG. 11. 	�0,1� as a function of E /T, in the 40�40 system, for
several f . The symbols are the same as in the previous figure. A line
has been added to the f =0.075 data to guide the eye.

FIG. 12. Phase diagram in E /T and f for T=1.2, in the 40
�40 system. A continuous boundary separates DO from TS �dia-
monds� as well as DO from PS �triangles�. �’s indicate a possible
boundary between TS and PS. A few typical error bars are shown.
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order; nor do they indicate disorder. Instead, the system finds
itself in configurations similar to the top left panel of Fig. 13:
The competition between the two ordered phases seems very
balanced in this small system. It would be interesting to
simulate larger systems and explore whether this type of
“phase competition” persists or whether the KLS order even-
tually becomes stable.

Additional information is provided by the susceptibilities.
Observations of 	�0,1� are consistent with a continuous
transition from disorder into the transverse strip at small E.
Seeking a signature of the KLS phase, we show 	�1,0� and
	�0,1� for f =0.075 in Fig. 15. Here we observe a second
peak in 	�0,1� at E=7.2, which corresponds to S�0,1�
�0.4 in Fig. 14. This peak is rather broad, and its amplitude
is more than twice that of the first peak �associated with the
DO-TS transition�. Perhaps it suggests a first-order transition
which would be observed in a larger system, separating the
two-species phase from the KLS phase. Finally, at higher E
both 	�0,1� and 	�1,0� fluctuate around nonzero values,
reflecting the fluctuations of the competing phases. We note
no signal of a transition in 	�1,0�.

For f in the neighborhood of 0.05, the transverse strip is
observed at low E and the parallel strip at high E. The

boundary, however, is difficult to locate precisely due to the
phase competition. Upon reducing f below 0.05 we find that
the transverse strip has essentially disappeared. Meanwhile,
S�1,0� saturates at 0.50, indicating that the KLS strip has
formed. Apparently the system is unable to completely order
at any E, since TKLS�E=
�=1.4. We stress that this behavior
is due to the proximity of the KLS phase transition, not due
to some residual competition with the transverse strip.

C. Scaling arguments

Now that we have surveyed the phase diagram in some
detail, we turn to look closely at some of the boundaries with
the help of some scaling arguments. Considering Fig. 1
again, we note two potentially troubling features. First, there
is a shift in Tc across the DO-TS boundary of about 50%
between the two system sizes. We will characterize this shift
using a mean-field scaling argument. Second, we note that
the bicritical point has shifted towards the f =0 axis in the
larger system. It has been alluded to before that the number
of rows of the minority species, rather than the fraction f ,
might be the controlling variable. We will investigate this
suggestion more carefully by considering some larger sys-
tems and rectangular geometries. Finally we study the f =0
phase transition, using scaling arguments developed for the
KLS model.

The shift in Tc with system size is most pronounced at f
=0.50. Previous work on the two-species model with J=0
treated the ordered phase in a mean-field approximation by
solving equations of motion for the two different charge den-
sities �8,14�. It was found that the scaling functions depend
on the combination ELy /T, indicating that the effective bias
E /T introduces a new length scale. This scaling implies an
infinite-volume limit in which E /T→0 as Ly→
, while
keeping ELy /T fixed. Earlier analyses of the ordered phase
based on these ideas have worked quite well, so that we now
attempt to extend this approach to analyze quantities near
criticality and for J�0. There is no reason to expect success
a priori, as both critical fluctuations and nonzero J may
modify the scaling variables and the mean-field exponents.
In Figs. 16 and 17 we have plotted S�0,1� and 	�0,1� for
J=1.0. �We have divided 	�0,1�, Eq. �4�, by the volume in
order to compare different system sizes more easily.� Rather
than crossing the phase boundary by varying T we have
opted instead to vary E since this allows us to vary the ef-

FIG. 13. �Color online� Typical configurations for the T=1.2
plane, in the 40�40 system. Upper left, f =0.075, E=20.0; upper
right, f =0.05, E=20.0; lower left, f =0.075, E=4.0; lower right, f
=0.05, E=2.4.

FIG. 14. S�0,1� as a function of E /T, in the 40�40 system for
several f . f =0.50, diamonds; f =0.10, squares; f =0.075, solid tri-
angles. Open triangles indicate S�1,0� for f =0.075.

FIG. 15. 	�0,1� �solid triangles� and 	�1,0� �open triangles� as
a function of E /T in the 40�40 system for f =0.075.
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fective bias E /T at constant interaction strength, J /T. While
the collapse of S�0,1� in Fig. 16 is not perfect, the mean-
field scaling argument accounts for most of the shift in Tc.
There is a shift in the peak of 	�0,1� of about 3.6% between
the largest and smallest systems; if the same data were plot-
ted without rescaling, the shift in Tc is about 52%. Also of
note is the extremely weak dependence on the transverse
dimension, as predicted by the scaling argument.

Another issue concerns the location of the junction of the
three phase boundaries, shown in Fig. 1. It is clear that the
junction moves toward the f =0 axis as the system size is
increased. In fact, in both systems the boundaries merge just
below a single row of the minority species, which naturally
corresponds to a smaller f in the larger system. In Fig. 18 we
have replotted the data from Fig. 1, replacing f with fLy /2,
which is simply the number of rows of the minority species.
Near the junction of the three lines we have also included
results from a few other system sizes with rectangular geom-
etries. Plotted vs fLy /2, the junctions of the boundaries co-
incide, within the error bars, for all system sizes, suggesting
that the onset of the two-species order occurs, at least in
relatively small finite systems, when there are sufficient mi-
nority particles to form a single row. The crucial question
concerns the extrapolation of this result to an appropriate
thermodynamic limit. If the system size goes to infinity in
the most naive way—i.e., Lx ,Ly→
 at fixed aspect ratio
Lx /Ly—the particle density associated with a “single row”
vanishes. It is possible that the DO-PS transition exists in an
infinite volume only at f =0 and any finite density of “disor-

der” �i.e., the minority species� induces the two-species or-
der. Preliminary studies �26� indicate that the minority spe-
cies does indeed constitute a relevant perturbation to the
KLS fixed point. We will have to leave discussion of this
issue to future work and for now limit ourselves to state-
ments about finite systems.

At f =0 there is only one species and we observe the KLS
transition at finite E. Though a great deal of study has been
devoted to this transition at infinite E, there has been no
detailed work at finite E. Here we present a basic finite-size
scaling �FSS� analysis of this transition in order to locate
Tc�E=2.0� and also to demonstrate the subtleties which can
arise when studying phase transitions with anisotropic, non-
equilibrium dynamics.

Field-theoretic studies of the KLS model �12� indicate
that the critical behavior is strongly anisotropic, meaning that
correlation lengths diverge with different exponents in the
field direction and perpendicular to the field. Specifically, the
fluctuations perpendicular to the field are Gaussian ��

=1/2� while those parallel to the field are not � =3/2�.
Correlations therefore grow faster in the parallel direction as
T→Tc�E�, suggesting an analysis of rectangular samples
such that the anisotropic aspect ratio A�L

�/L�
−1 is held

fixed �10�. While there is some discussion regarding the cor-
rect mesoscopic model �13�, detailed numerical simulations
show that the exponents cited above are the correct ones
�9,11�. In the following we will use only the phenomenologi-
cal result of Leung for the scaling of the order parameter at
fixed A:

S�T,L,L�� = L
−�/S̄�tL

1/,L
�/L�

−1� , �6�

where S refers to S�1,0�. A detailed discussion of the subtle-
ties of the FSS analysis for the KLS model and precision
numerical results can be found in �9�. Figure 19 presents our
data for the scaled order parameter at E=2; the same data for
saturation E can be found elsewhere �27�. These data are not
intended as a test of the mesoscopic model, merely meant to
indicate that the exponents at infinite E are consistent with
those at finite E and to determine Tc�E=2.0�=1.20�2�. The
data collapse is comparable to that seen at saturation E, with
the high-temperature �lower� branch collapsing quite well
and the low-temperature �upper� branch showing small, but

FIG. 16. S�0,1� as a function of effective drive for J=1, f
=0.50. System sizes: 40�40, open triangles; 40�60, circles; 40
�80, �’s; 60�60, solid triangles; 60�80, squares. Lines have
been added to the largest and smallest systems to guide the eye.

FIG. 17. 	�0,1� as a function of effective drive for J=1, f
=0.50. The symbols are the same as in the previous figure.

FIG. 18. The phase diagram in the f-T plane, E=2.0, with f
rescaled to represent the number of rows of the minority species.
System sizes: solid triangles, 40�40; �’s, 60�60; squares, 60
�80.
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systematic deviations from scaling. These deviations remain
unexplained. They are possibly due to corrections to scaling
or perhaps the asymptotic region is only observed very close
to Tc.

We have seen how subtle are the issues surrounding the
transition at f =0. Perhaps a fruitful way to proceed when f
�0 is to adopt the technique introduced by Caracciolo et al.
�28�, directly measuring finite-volume correlation lengths for
various geometries and volumes. In this way we may de-
velop some understanding of how to approach the infinite-
volume limit in a simple way, minimizing corrections to scal-
ing which would complicate an uninformed analysis.

IV. CONCLUSIONS AND OUTLOOK

We have compiled a detailed phase diagram for a system
of two species of particles, interacting via attractive Ising
interactions and driven into opposite directions by an exter-
nal “electric” field E. The purpose of our analysis was to
unify previous studies which were restricted either to just
one species or to having only excluded-volume interactions.
In the former case, particles order into a single strip aligned
with the field direction, while in the second model, the two
oppositely driven species form a jam in the shape of a trans-
verse strip. We monitor structure factors, their fluctuations,
and, if necessary, their time traces to identify the location and
character of the transitions. Most of our data are taken at
fixed E, varying the fraction f of the “minority” species and
temperature T. At high f , we observe a continuous transition

from a disordered phase into the transverse strip, as the tem-
perature is lowered. Noting a significant system-size depen-
dence of the critical line, we invoke a mean-field scaling
argument �8,14� which suggests that ELy /T is a good scaling
variable. This is confirmed quite satisfactorily by our data. At
smaller f �0.05� f �0.10 for a 40�40 system� we observe
two transitions as T is lowered: first into the transverse strip
�continuous� and then into the parallel strip �first order�. And
finally at the smallest f a single, continuous transition is
observed in the parallel strip. The junction of the three
phases—disorder, transverse, and parallel strip—appears to
be a multicritical point. Analyzing the data for a range of
system sizes suggests that its location scales with f /Lx, rather
than f; i.e., the relevant quantity is the number of rows which
can be formed by the minority particles. Depending on how
the thermodynamic limit is approached, the multicritical
point can shift to f =0.

Several projects suggest themselves to extend this work.
First, an analysis of larger systems at fixed T could clear up
some questions, especially regarding the fate of the “phase
competition” which is observed close to the multicritical
point. Many of the “transitions” in the 40�40 system re-
quire an analysis of larger lattices in order to confirm their
existence. Second, a look at structure factors in the disor-
dered phase is likely to reveal the presence of long-range
correlations. Since these are known to be quite distinct in the
KLS �3� and SHZ �17� models, it would be interesting to
investigate how the crossover occurs. Such a study would
also yield considerable insight into the type of noise terms
which would have to be added to the mean-field equations in
order to capture fluctuations and critical properties accu-
rately. These equations would then provide a reliable starting
point for an analysis of the KLS transition in the presence of
a few minority charges, in order to understand the true nature
of the KLS critical point: does it mark the beginning of a
critical line, or is it a multicritical point?

ACKNOWLEDGMENTS

We thank R.K.P. Zia, I. Georgiev, U.C. Täuber, A. Gam-
bassi, M. Gubinelli, G. Korniss, and H.K. Janssen for fruitful
discussions. This work was supported in part by NSF Grant
Nos. DMR-0088451, DMR-0414122, and SBE-0244916, as
well as the Jeffress Memorial Trust, Grant No. J-594.

�1� B. Schmittmann and R. K. P. Zia, in Phase Transitions and
Critical Phenomena, edited by C. Domb and J. L. Lebowitz
�Academic, London, 1995�, Vol. 17.

�2� J. Marro and R. Dickman, Non-Equilibrium Phase Transitions
in Lattice Models �Cambridge University Press, Cambridge,
England, 1999�.

�3� M. Q. Zhang, J-S. Wang, J. L. Lebowitz, and J. L. Vallès, J.
Stat. Phys. 52, 1461 �1988�; P. L. Garrido, J. L. Lebowitz, C.
Maes, and H. Spohn, Phys. Rev. A 42, 1954 �1990�; G. Grin-
stein, J. Appl. Phys. 69, 5441 �1991�; B. Schmittmann and R.
K. P. Zia, J. Stat. Phys. 91, 525 �1998�.

�4� E. Ising, Z. Phys. 31, 253 �1925�; B. M. McCoy and T. T. Wu,
The Two-Dimensional Ising Model �Harvard University Press,
Cambridge, MA, 1973�.

�5� S. Katz, J. L. Lebowitz, and H. Spohn, Phys. Rev. B 28, 1655
�1983�; J. Stat. Phys. 34, 497 �1984�.

�6� B. Schmittmann, K. Hwang, and R. K. P. Zia, Europhys. Lett.
19, 19 �1992�.

�7� O. Biham, A. A. Middleton, and D. Levine, Phys. Rev. A 46,
R6124 �1992�; D. Chowdhury, L. Santen, and A. Schad-
schneider, Phys. Rep. 329, 199 �2000�.

�8� K-t. Leung and R. K. P. Zia, Phys. Rev. E 56, 308 �1997�.

FIG. 19. Anisotropic scaling plot of S�1,0� at f =0, E=2.0. Sys-
tem sizes: squares, 24�54; �’s, 28�86; triangles, 32�128.

E. LYMAN AND B. SCHMITTMANN PHYSICAL REVIEW E 72, 036127 �2005�

036127-10



�9� S. Caracciolo, A. Gambassi, M. Gubinelli, and A. Pelissetto, J.
Phys. A 36, L315 �2003�; J. Stat. Phys. 115, 281 �2004�.

�10� K-t. Leung, Phys. Rev. Lett. 66, 453 �1991�; Int. J. Mod. Phys.
C 3, 367 �1992�.

�11� J-S. Wang, J. Stat. Phys. 82, 1409 �1996�; K-t. Leung and J-S.
Wang, Int. J. Mod. Phys. C 10, 853 �1999�.

�12� H. K. Janssen and B. Schmittmann, Z. Phys. B: Condens.
Matter 64, 503 �1986�; K-t. Leung and J. L. Cardy, J. Stat.
Phys. 44, 567 �1986�; 45, 1087�E� �1986�.

�13� B. Schmittmann, H. K. Janssen, U. C. Täuber, R. K. P. Zia,
K.-t. Leung, and J. L. Cardy, Phys. Rev. E 61, 5977 �2000�.

�14� I. Vilfan, R. K. P. Zia, and B. Schmittmann, Phys. Rev. Lett.
73, 2071 �1994�.

�15� G. Korniss, B. Schmittmann, and R. K. P. Zia, Europhys. Lett.
32, 49 �1995�; J. Stat. Phys. 86, 721 �1996�.

�16� K. E. Bassler, B. Schmittmann, and R. K. P. Zia, Europhys.
Lett. 24, 115 �1993�.

�17� G. Korniss, B. Schmittmann, and R. K. P. Zia, Physica A 239,
111 �1997�.

�18� D. Mukamel, in Soft and Fragile Matter, edited by M. E. Cates
and M. R. Evans �IOP, Bristol, 2000�.

�19� B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer,

Europhys. Lett. 22, 651 �1993�; J. Stat. Phys. 73, 813 �1993�.
�20� J. T. Mettetal, B. Schmittmann, and R. K. P. Zia, Europhys.

Lett. 58, 653 �2002�.
�21� Y. Kafri, E. Levine, D. Mukamel, G. M. Schütz, and J. Török,

Phys. Rev. Lett. 89, 035702 �2002�.
�22� B. Schmittmann, J. T. Mettetal, and R. K. P. Zia, in Computer

Simulation Studies in Condensed Matter Physics XVI, edited
by D. P. Landau, S. P. Lewis, and H.-B. Schüttler �Springer,
Heidelberg, 2003�.

�23� I. T. Georgiev, B. Schmittmann, and R. K. P. Zia, Phys. Rev.
Lett. 94, 115701 �2005�.

�24� E. Lyman and B. Schmittmann, J. Phys. A 35, L213-L218
�2002�.

�25� N. Metropolis, A. W. Rosenbluth, M. M. Rosenbluth, A. H.
Teller, and E. Teller, J. Chem. Phys. 21, 1087 �1953�.

�26� B. Schmittmann �unpublished�.
�27� Edward Lyman and B. Schmittmann, in Recent Developments

in Simulation Studies in Condensed Matter Physics XVI, edited
by D. P. Landau, S. P. Lewis, and H.-B. Schüttler �Springer,
Heidelberg, 2004�.

�28� S. Caracciolo, A. Gambassi, M. Gubinelli, and A. Pelissetto,
Eur. Phys. J. B 20, 255 �2001�.

STEADY STATES OF A NONEQUILIBRIUM LATTICE GAS PHYSICAL REVIEW E 72, 036127 �2005�

036127-11


